A Data Protection Framework for Learning Analytics
DOI:
https://doi.org/10.18608/jla.2016.31.6Keywords:
Learning analytics, privacy, data protection, consent, legitimate interestsAbstract
Most studies on the use of digital student data adopt an ethical framework derived from human-studies research, based on the informed consent of the experimental subject. However consent gives universities little guidance on the use of learning analytics as a routine part of educational provision: which purposes are legitimate and which analyses involve an unacceptable risk of harm. Obtaining consent when students join a course will not give them meaningful control over their personal data three or more years later. Relying on consent may exclude those most likely to benefit from early interventions. This paper proposes an alternative framework based on European Data Protection law. Separating the processes of analysis (pattern-finding) and intervention (pattern-matching) gives students and staff continuing protection from inadvertent harm during data analysis; students have a fully informed choice whether or not to accept individual interventions; organisations obtain clear guidance: how to conduct analysis, which analyses should not proceed, and when and how interventions should be offered. The framework provides formal support for practices that are already being adopted and helps with several open questions in learning analytics, including its application to small groups and alumni, automated processing and privacy-sensitive data.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Journal of Learning Analytics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) license that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).