Knowledge Transfer in a Two-Mode Network Between Higher Education Teachers and Their Innovative Teaching Projects


  • Elena Stasewitsch TU Braunschweig
  • Luisa Barthauer TU Braunschweig
  • Simone Kauffeld TU Braunschweig



social network analysis, knowledge transfer, diffusion of innovation, educational innovation, higher education, two-mode network, small world, research paper


Knowledge transfer (KT) and innovation diffusion are closely related to each other because it is knowledge regarding an innovation that gets adopted. Little research in learning analytics provides insight into KT processes in two-mode networks, especially in the context of educational innovations. It is unclear how such networks are structured and whether funding can create a network structure efficient for KT. We used a case-study approach to analyze a two-mode network of 208 university members (based on archival data) who worked together on 91 innovative teaching projects. Our results show that the two-mode network displays a decentralized structure and more clustering than can be assumed by chance, promoting KT and learning. To gain a deeper understanding of the kind of knowledge that is transferred in the network, we analyzed the effects of different educational innovation elements (e.g., game-based learning) as attributes of higher education teachers. Overall, our results suggest that funding and the creation of project structures in the context of educational innovation is a sustainable way to create KT, and therefore organizational change. Furthermore, the results imply that university practitioners need to implement networking interventions to create more connections between subgroups in teacher-related networks.


Amabile, T. M. (2012). Componential Theory of Creativity. Harvard Business School Working Paper, 12-096. Retrieved from

Ansell, C., Lundin, M., & Öberg, P. O. (2017). Learning networks among Swedish municipalities: Is Sweden a small world? In J. Glückler, E. Lazega, & I. Hammer (Eds.), Knowledge and Networks (pp. 315–336). New York, NY: Springer.

Argote, L., & Fahrenkopf, E. (2016). Knowledge transfer in organizations: The roles of members, tasks, tools, and networks. Organizational Behavior and Human Decision Processes, 136, 146–159.

Argote, L., & Ingram, P. (2000). Knowledge transfer: A basis for competitive advantage in firms. Organizational Behavior and Human Decision Processes, 82(1), 150–169.

Arrow, H., McGrath, J. E., & Berdahl, J. L. (2000). Small Groups as Complex Systems: Formation, Coordination, Development, and Adaptation. New York, NY: Sage Publications.

Avella, J. T., Kebritchi, M., Nunn, S. G., & Kanai, T. (2016). Learning analytics methods, benefits, and challenges in higher education: A systematic literature review. Online Learning, 20(2), 13–29.

Bassett-Jones, N. (2005). The paradox of diversity management, creativity and innovation. Creativity and Innovation Management, 14(2), 169–175.

Battelle for Kids (2021). Annual Report 2020. Retrieved from

Benz-Gydat, M., Jütte, W., Lobe, C., & Walber, M. (2021). Neue Lehre in der Hochschule. Verstetigung innovativer Lehrprojekte in sozialen Hochschulwelten [New teaching in higher education. Continuation of innovative teaching projects in social university environments]. WBV.

Böhme, S., Othmer, J., & Herrmann, C. (2019). PlayING und Holistic: ein spielbasiertes Lehr-Lern-Konzept zur Vermittlung eines ganzheitlichen Life Cycle Management [PlayING and Holistic: A game-based teaching-learning concept for teaching holistic life cycle management]. In S. Kauffeld & J. Othmer (Eds.), Handbuch Innovative Lehre [Handbook of innovative teaching] (pp. 255–268). New York, NY: Springer.

Borgatti, S. P. (2002). NetDraw: Graph Visualization Software. Harvard, MA, USA: Analytic Technologies.

Borgatti, S. P., & Everett, M. G. (1999). Models of core/periphery structures. Social Networks, 21(4), 375–395.

Borgatti, S. P., Everett, M. G., and Freeman, L. C. (2002). UCINET 6 for Windows: Software for Social Network Analysis. Harvard, MA: Analytic Technologies.

Campbell, J. P., DeBlois, P. B., & Oblinger, D. G. (2007). Academic analytics: A new tool for a new era. EDUCAUSE Review, 42(4), 40. Retrieved from

Centola, D. (2011). An experimental study of homophily in the adoption of health behavior. Science, 334(6060), 1269–1272.

Centola, D. (2015). The social origins of networks and diffusion. American Journal of Sociology, 120(5), 1295–1338.

Centola, D., & Macy, M. (2007). Complex contagions and the weakness of long ties. American Journal of Sociology, 113(3), 702–734.

Cowan, R., & Jonard, N. (2004). Network structure and the diffusion of knowledge. Journal of Economic Dynamics and Control, 28(8), 1557–1575.

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695(5), 1–9. Retrieved from

Dado, M., & Bodemer, D. (2017). A review of methodological applications of social network analysis in computer-supported collaborative learning. Educational Research Review, 22, 159–180.

Daly, A. J., & Finnigan, K. S. (2010). A bridge between worlds: Understanding network structure to understand change strategy. Journal of Educational Change, 11(2), 111–138.

Daly, A. J., Liou, Y. H., & Moolenaar, N. M. (2014). The principal connection: Trust and innovative climate in a network of reform. In D. Van Maele, P. B. Forsyth, & M. Van Houtte (Eds.), Trust and School Life (pp. 285–311). New York, NY: Springer.

Erdös, P., & Rényi, A. (1959). On random graphs. Publicationes Mathematicae, 6, 290–297.

Euler, D., & Seufert, S. (2005). Change Management in der Hochschullehre: Die nachhaltige Implementierung von e- Learning-Innovationen [Change management in university teaching: the sustainable implementation of e-Learning innovations]. Zeitschrift für Hochschulentwicklung, 3, 3–15. Retrieved from

Everett, M. G., & Borgatti, S. P. (1999). The centrality of groups and classes. The Journal of Mathematical Sociology, 23(3), 181–201.

Federal Ministry of Education and Learning (2021). Qualitätspakt Lehre [Quality Teaching Act]. Retrieved from

Feixas, M., Martínez-Usarralde, M. J., & López-Martín, R. (2018). Do teaching innovative projects make a difference? Assessing the impact of small-scale funding. Tertiary Education and Management, 24(4), 267–283.

Ferguson, R., Clow, D., Macfadyen, L., Essa, A., Dawson, S., & Alexander, S. (2014). Setting LA in context: Overcoming the barriers to large-scale adoption. In Proceedings of the Fourth International Conference on Learning Analytics and Knowledge (LAK 2014), 24–28 March 2014, Indianapolis, IN, USA (pp. 251–253). ACM.

Fleming, L., King III, C., & Juda, A. I. (2007). Small worlds and regional innovation. Organization Science, 18(6), 938–954.

Froehlich, D. E., Rehm, M., & Rienties, B. C. (2020). Mixed methods social network analysis: Theories and methodologies in learning and education. New York, NY: Routledge.

García-Peñalvo, F. J., Blanco, Á. F., & Sein-Echaluce, M. L. (2015, October). Educational innovation management: a case study at the University of Salamanca. In Proceedings of the Third International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM 2015), 7–9 October 2015, Porto, Portugal (pp. 151–158). ACM.

Gasevic, D., Jovanovic, J., Pardo, A., & Dawson, S. (2017). Detecting learning strategies with analytics: Links with self-reported measures and academic performance. Journal of Learning Analytics, 4(2), 113–128.

Gehrke, S., & Kezar, A. (2017). The roles of STEM faculty communities of practice in institutional and departmental reform in higher education. American Educational Research Journal, 54(5), 803–833.

Glerum, D. R., Joseph, D. L., McKenny, A. F., & Fritzsche, B. A. (2021). The trainer matters: Cross-classified models of trainee reactions. Journal of Applied Psychology, 106(2), 281–299.

Greller, W., & Drachsler, H. (2012). Translating learning into numbers: A generic framework for learning analytics. Journal of Educational Technology & Society, 15(3), 42–57. Retrieved from

Grohmann, A., Schulte, E.M. & Kauffeld, S. (2021). Entwicklung und Erprobung eines Kurzfragebogens zurBeurteilung von Trainer/innenkompetenzen in beruflichen Weiterbildungsmaßnahmen [Development and testing of a short questionnaire for the assessment of trainer competencies in professional development measures]. Gruppe. Interaktion. Organisation. Zeitschrift für Angewandte Organisationspsychologie (GIO), 52(1), 79–90.

Gruzd, A., Paulin, D., & Haythornthwaite, C. (2016). Analyzing social media and learning through content and social network analysis: A faceted methodological approach. Journal of Learning Analytics, 3(3), 46–71.

Hansen, M. T. (1999). The search-transfer problem: The role of weak ties in sharing knowledge across organization subunits. Administrative Science Quarterly, 44(1), 82–111.

Hasanefendic, S., Birkholz, J. M., Horta, H., & Van der Sijde, P. (2017). Individuals in action: Bringing about innovation in higher education. European Journal of Higher Education, 7(2), 101–119.

Hauschildt, J., & Salomo, S. (2004). Innovationsmanagement [Innovation management] (2. Aufl.). Munich, Germany: Vahlen.

Herodotou, C., Rienties, B., Verdin, B., & Boroowa, A. (2019). Predictive learning analytics “at scale”: Guidelines to successful implementation in higher education based on the case of the Open University UK. Journal of Learning Analytics, 6(1), 85–95.

Hobson, E. A., Silk, M. J., Fefferman, N. H., Larremore, D. B., Rombach, P., Shai, S., & Pinter-Wollman, N. (2021). A guide to choosing and implementing reference models for social network analysis. Biological Reviews, 96(6), 2716–2734.

Jütte, W., Walber, M., & Lobe, C. (2017). Das Neue in der Hochschullehre: Erweiterung des Blickes [The new thing in university teaching: Broadening the perspective]. New York, NY: Springer.

Kauffeld, S. (2017). Diskussionspapier “Gute Lehre an der TU Braunschweig” [Discussion paper “Good teaching at the TU Braunschweig”]. Retrieved from

Kauffeld, S., & Othmer, J. (2019). Handbuch innovative Lehre [Handbook of innovative teaching]. Berlin, Germany: Springer.

Kauffeld, S., Spurk, D., Barthauer, L., & Kaucher, P. (2018). Auf dem Weg zur Professur? Laufbahnen im wissenschaftlichen Kontext [On the way to a professorship? Career paths in an academic context.] In S. Kauffeld & D. Spurk (Eds.), Handbuch Laufbahnmanagement und Karriereplanung [Career management and planning handbook]. New York, NY: Springer.

Kauffeld, S., Stasewitsch, E., de Wall, K., & Othmer, J. (2019). Innovationen in der Hochschullehre—das Beispiel Technische Universität Braunschweig [Innovations in university teaching—The example of the Technical University of Braunschweig]. In S. Kauffeld & J. Othmer (Eds.), Handbuch innovative Lehre [Handbook of innovative teaching] (1–42). New York, NY: Springer.

Kezar, A. (2014). Higher education change and social networks: A review of research. The Journal of Higher Education, 85(1), 91–125.

Kolleck, N. (2014). Innovations through networks: Understanding the role of social relations for educational innovations. Zeitschrift für Erziehungswissenschaft, 17(5), 47–64.

Kozma, R. B. (2005). National policies that connect ICT-based education reform to economic and social development. Human Technology: An Interdisciplinary Journal on Humans in ICT Environments, 1(2), 117–156. Retrieved from

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.

Leitner, P., Khalil, M., & Ebner, M (2017). Learning analytics in higher education—A literature review. In A. Peña-Ayala (Ed.), Learning Analytics: Fundaments, Applications, and Trends (pp. 1–23). New York, NY: Springer International Publishing.

Ma, S., Herman, G. L., West, M., Tomkin, J., & Mestre, J. (2019). Studying STEM faculty communities of practice through social network analysis. The Journal of Higher Education, 90(5), 773–799.

McGrath, J., & Argote, L. (2001). Group processes in organizational contexts. In M. Hogg & R. Tindale (Eds.), Blackwell Handbook of Social Psychology: Group Processes (603–627). Malden, MA: Blackwell.

Milgram, S. (1967). The small world problem. Psychology Today, 1(1), 61–67. Retrieved from

Mirriahi, N., Dawson, S., & Hoven, D. (2012). Identifying key actors for technology adoption in higher education: A social network approach. Future challenges, sustainable futures. In Ascilite 2012 Proceedings, 25–28 November 2012, Wellington, New Zealand (pp. 664–574).,_negin_-_identifying_key.pdf

Newman, M. E. (2001). Scientific collaboration networks. Network construction and fundamental results. Physical Review E, 64(1), 1–8.

Newman, M. E. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39–54.

Opsahl, T., Colizza, V., Panzarasa, P., & Ramasco, J. J. (2008). Prominence and control: the weighted rich-club effect. Physical Review Letters, 101(16), 168702.

Opsahl, T. (2011). R Package “tnet.” Version 3.0.5. Comprehensive R Archive Network, R Foundation for Statistical Computing.

Opsahl, T. (2012a). Projection. Retrieved from

Opsahl, T. (2012b). Clustering in two-mode networks. Retrieved from networks/clustering/

Opsahl, T. (2013). Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. SocialNetworks, 35(2), 159–167.

Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortestpaths. Social Networks, 32(3), 245–251.

Opsahl, T., & Panzarasa, P. (2009). Clustering in weighted networks. Social Networks, 31(2), 155–163.

Opsahl, T., Vernet, A., Alnuaimi, T., & George, G. (2017). Revisiting the small-world phenomenon: Efficiency variation and classification of small-world networks. Organizational Research Methods, 20(1), 149–173.

Orfield, G., Kim, J., Sunderman, G., & Greer, B. (2004). No Child Left Behind: A Federal, State, and District Level Look at the First Year. Retrieved from

Padrón, B., Nogales, M., & Traveset, A. (2011). Alternative approaches of transforming bimodal into unimodal mutualistic networks. The usefulness of preserving weighted information. Basic and Applied Ecology, 12(8), 713–721.

Pauna, M. J. (2017). Calculus course assessment data. Journal of Learning Analytics, 4(2), 12–21.

Phelps, C., Heidl, R., & Wadhwa, A. (2012). Knowledge, networks, and knowledge networks: A review and research agenda. Journal of Management, 38(4), 1115–1166.

Portes, A. (1998). Social capital: Its origins and applications in modern sociology. Annual Review of Sociology, 24(1), 1–24.

Quardokus, K., & Henderson, C. (2015). Promoting instructional change: Using social network analysis to understand the informal structure of academic departments. Higher Education, 70(3), 315–335.

Rau, M. A. (2017). How do students learn to see concepts in visualizations? Social learning mechanisms with physical and virtual representations. Journal of Learning Analytics, 4(2), 240–263.

Rice, R. E., & Rogers, E. M. (1980). Reinvention in the innovation process. Knowledge, 1(4), 499–514.

Rienties, B., Herodotou, C., Olney, T., Schencks, M., & Boroowa, A. (2018). Making sense of learning analytics dashboards: A technology acceptance perspective of 95 teachers. The International Review of Research in Open and Distributed Learning, 19(5).

Rogers, E. M. (2003). Diffusion of innovations. New York, NY: Free Press.

Rogers, J. D., Bozeman, B., & Chompalov, I. (2001). Obstacles and opportunities in the application of network analysis to the evaluation of R&D. Research Evaluation, 10(3), 161–72.

Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12–27.

Rowley, J. (2002). Using case studies in research. Management Research News, 25(1), 16–27.

Scheffel, M., Drachsler, H., Stoyanov, S., & Specht, M. (2014). Quality indicators for learning analytics. Journal of Educational Technology & Society, 17(4), 117–132. Retrieved from

Schomburg, H., Flöther, C., & Wolf, V. (2012). Wandel von Lehre und Studium an deutschen Hochschulen–Erfahrungen und Sichtweisen der Lehrenden. Projektbericht [Changes in teaching and academic studies at German universities—experiences and perceptions of teachers. Project report]. INCHER-Kassel. Retrieved from

Scott, J. (2017). Social network analysis. Thousand Oaks, CA: Sage.

Siemens, G., & Baker, R. S. J. d. (2012). Learning analytics and educational data mining: Towards communication and collaboration. In S. B. Shum, D. Gasevic, & R. Ferguson (Eds.), Proceedings of the Second International Conference on Learning Analytics and Knowledge (LAK 2012), 29 April–2 May 2012, Vancouver, BC, Canada (pp. 252–254). ACM.

Singh, J. (2005). Collaborative networks as determinants of knowledge diffusion patterns. Management Science, 51, 756–770.

Škerlavaj, M., & Dimovski, V. (2006). Social network approach to organizational learning. Journal of Applied Business Research, 22(2), 89–98.

Stasewitsch, E., Handke, L., Kauffeld, S., Mumm, O., Thomidou, A. & Carlow, V. M. (2021). Architektur trifft auf Psychologie: vom Potenzial eines besonderen Spannungsfeldes: Forschendes Lernen im interdisziplinären Kontext [Architecture meets psychology: about the potential of an exceptional field: research-based learning in an interdisciplinary context]. Die Hochschullehre, 7(25), 265–278.

Stasewitsch, E., & Kauffeld, S. (2021). Akademische Fachzirkel: Können gruppenbasierte Interventionen zu nachhaltigen Veränderungsprozessen in Hochschulen beitragen? [Academic circles: Can group-based interventions contribute to sustainable change processes in universities?] Das Hochschulwesen, 69(3), 103–110.

Steen, J., Macaulay, S., & Kastelle, T. (2011). Small worlds: The best network structure for innovation? Prometheus, 29(1), 39–50.

Technische Universität Braunschweig (2016). Strategiepapier für den Bereich Medien in Lehre und Studium [Strategy paper for the area of media in teaching and learning]. Retrieved from

Technische Universität Braunschweig (2021). Innovationsprogramm Gute Lehre [Innovation program good teaching]. Retrieved from

Towndrow, P. A., Silver, R. E., & Albright, J. (2010). Setting expectations for educational innovations. Journal of Educational Change, 11(4), 425–455.

Uzzi, B., Amaral, L. A., & Reed-Tsochas, F. (2007). Small-world networks and management science research: A review. European Management Review, 4(2), 77–91.

Uzzi, B., & Spiro, J. (2005). Collaboration and creativity: The small world problem. American Journal of Sociology, 111(2), 447–504.

Valente, T. W. (2012). Network interventions. Science, 337(6090), 49–53.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440–442.

Wenger, E. C. (1998). Communities of practice: Learning as a social system. Systems Thinker, 9(5), 1–10. Retrieved from

Wenger, E., McDermott, R., & Snyder, W.M. (2002). Cultivating Communities of Practice. Boston, MA: Harvard Business School Press.




How to Cite

Stasewitsch, E., Barthauer, L., & Kauffeld, S. (2022). Knowledge Transfer in a Two-Mode Network Between Higher Education Teachers and Their Innovative Teaching Projects. Journal of Learning Analytics, 9(1), 93-110.



Special Section: Networks in Learning Analytics