Socio-spatial Learning Analytics in Co-located Collaborative Learning Spaces:

A Systematic Literature Review

Authors

DOI:

https://doi.org/10.18608/jla.2023.7991

Keywords:

collaborative learning, socio-spatial learning analytics, ubiquitous computing, systematic literature review, social interaction

Abstract

Socio-spatial learning analytics (SSLA) is an emerging area within learning analytics research that seeks to un-
cover valuable educational insights from individuals’ social and spatial data traces. These traces are captured
automatically through sensing technologies in physical learning spaces, and the research is commonly based on
the theoretical foundations of social constructivism and cultural anthropology. With its growing empirical basis, a
systematic literature review is timely in order to provide educational researchers and practitioners with a detailed
summary of the emerging works and the opportunities enabled by SSLA. This paper presents a systematic review of
25 peer-reviewed articles on SSLA published between 2011 and 2023. Descriptive, network, and thematic analyses
were conducted to identify the citation networks, essential components, opportunities, and challenges enabled by
SSLA. The findings illustrated that SSLA provides the opportunity to (1) contribute unobtrusive and unsupervised
research methodologies, (2) support educators’ classroom orchestration through visualizations, (3) support learner
reflection with continuous and reliable evidence, (4) develop novel theories about social and collaborative learning,
and (5) empower educational stakeholders with the quantitative data to evaluate different learning spaces. These
findings could support learning analytics and educational technology scholars and practitioners to better understand
and utilize SSLA to support future educational research and practice.

References

Adrot, A., & Bia Figueiredo, M. (2019). “Lost in digitization”: A spatial journey in emergency response and pragmatic legitimacy. In F. -X. de Vaujany, A. Adrot, E. Boxenbaum, & B. Leca (Eds.), Materiality in institutions: Spaces,

embodiment and technology in management and organization (pp. 151–181). Springer. https://doi.org/10.1007/978-3-

-97472-9 6

Ahuja, K., Kim, D., Xhakaj, F., Varga, V., Xie, A., Zhang, S., Townsend, J. E., Harrison, C., Ogan, A., & Agarwal, Y. (2019).

EduSense: Practical classroom sensing at scale. Proceedings of the ACM on Interactive, Mobile, Wearable and

Ubiquitous Technologies, 3(3), 1–26. https://doi.org/10.1145/3351229

Alterator, S., & Deed, C. (2013). Teacher adaptation to open learning spaces. Issues in Educational Research, 23(3), 315–330.

https://www.iier.org.au/iier23/alterator.pdf

Alwahaby, H., Cukurova, M., Papamitsiou, Z., & Giannakos, M. (2022). The evidence of impact and ethical considerations of multimodal learning analytics: A systematic literature review. In M. Giannakos, D. Spikol, D. Di Mitri, K. Sharma,

X. Ochoa, & R. Hammad (Eds.), The multimodal learning analytics handbook (pp. 289–325). Springer International.

https://doi.org/10.1007/978-3-031-08076-0 12

An, P., Bakker, S., Ordanovski, S., Taconis, R., & Eggen, B. (2018). ClassBeacons: Designing distributed visualization of teachers’ physical proximity in the classroom. In Proceedings of the 12th International Conference on Tangible, Embedded, and Embodied Interaction (TEI 2018), 18–21 March 2018, Stockholm, Sweden (pp. 357–367). ACM.

https://doi.org/10.1145/3173225.3173243

Back, M. D., Schmukle, S. C., & Egloff, B. (2008). Becoming friends by chance. Psychological Science, 19(5), 439. https:

//doi.org/10.1111/j.1467-9280.2008.02106.x

Baeten, M., Kyndt, E., Struyven, K., & Dochy, F. (2010). Using student-centred learning environments to stimulate deep approaches to learning: Factors encouraging or discouraging their effectiveness. Educational Research Review, 5(3),

–260. https://doi.org/10.1016/j.edurev.2010.06.001

Bandura, A., & Walters, R. H. (1977). Social learning theory (Vol. 1). Prentice Hall.

Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016). Simple online and realtime tracking. In Proceedings of the 2016

IEEE International Conference on Image Processing (ICIP 2016), 25–28 September 2016, Phoenix, AZ (pp. 3464–

. IEEE. https://doi.org/10.1109/ICIP.2016.7533003

Blikstein, P. (2013). Multimodal learning analytics. In Proceedings of the Third International Conference on Learning Analytics and Knowledge (LAK 2013), 8–13 April 2013, Leuven, Belgium (pp. 102–106). ACM. https://doi.org/10.1145/

2460316

Bodily, R., Kay, J., Aleven, V., Jivet, I., Davis, D., Xhakaj, F., & Verbert, K. (2018). Open learner models and learning analytics dashboards: A systematic review. In Proceedings of the Eighth International Conference on Learning Analytics and

Knowledge (LAK 2018), 7–9 March 2018, Sydney, Australia (pp. 41–50). ACM. https://doi.org/10.1145/3170358.

Bosch, N., Mills, C., Wammes, J. D., & Smilek, D. (2018). Quantifying classroom instructor dynamics with computer vision. In

C. Penstein Ros ́e, R. Mart ́ınez-Maldonado, H. U. Hoppe, R. Luckin, M. Mavrikis, K. Porayska-Pomsta, B. McLaren,

& B. du Boulay (Eds.), Proceedings of the 19th International Conference on Artificial Intelligence in Education (AIED

, 27–30 June 2018, London, UK (pp. 30–42). Springer. https://doi.org/10.1007/978-3-319-93843-1 3

Braun, V., & Clarke, V. (2019). Reflecting on reflexive thematic analysis. Qualitative Research in Sport, Exercise and Health,

(4), 589–597. https://doi.org/10.1080/2159676X.2019.1628806

Buckingham Shum, S., & Ferguson, R. (2012). Social learning analytics. Journal of Educational Technology & Society, 15(3),

–26.

Buckingham Shum, S., Ferguson, R., & Martinez-Maldonado, R. (2019). Human-centred learning analytics. Journal of Learning Analytics, 6(2), 1–9. https://doi.org/10.18608/jla.2019.62.1

Chaudhry, M. A., Cukurova, M., & Luckin, R. (2022). A transparency index framework for AI in education. In M. M.

Rodrigo, N. Matsuda, A. I. Cristea, & V. Dimitrova (Eds.), Proceedings of the 23rd International Conference on

Artificial Intelligence in Education, Part II (AIED 2022), 27–31 July 2022, Durham, UK (pp. 195–198). Springer.

https://doi.org/10.1007/978-3-031-11647-6 33

Chen, B., Chang, Y.-H., Ouyang, F., & Zhou, W. (2018). Fostering student engagement in online discussion through social learning analytics. The Internet and Higher Education, 37, 21–30. https://doi.org/10.1016/j.iheduc.2017.12.002

Chen, B., & Teasley, S. D. (2022). Learning analytics for understanding and supporting collaboration. In C. Lang, G. Siemens,

A. F. Wise, D. Ga ˇsevi ́c, & A. Merceron (Eds.), Handbook of learning analytics (pp. 86–95). Society for Learning

Analytics Research. https://solaresearch.org/wp-content/uploads/hla22/HLA22 Chapter 9 Chen.pdf

Chin, H. B., Mei, C. C. Y., & Taib, F. (2017). Instructional proxemics and its impact on classroom teaching and learning.

International Journal of Modern Languages and Applied Linguistics, 1(1), 69–85. https://doi.org/10.24191/ijmal.v1i1.

Chng, E., Seyam, M. R., Yao, W., & Schneider, B. (2020). Using motion sensors to understand collaborative interactions in digital fabrication labs. In I. Bittencourt, M. Cukurova, K. Muldner, R. Luckin, & E. Mill ́an (Eds.), Proceedings of the

st International Conference on Artificial Intelligence in Education (AIED 2020), 6–10 July 2020, Ifrane, Morocco

(pp. 118–128). Springer. https://doi.org/10.1007/978-3-030-52237-7 10

Chua, Y. H. V., Dauwels, J., & Tan, S. C. (2019). Technologies for automated analysis of co-located, real-life, physical learning spaces: Where are we now? In Proceedings of the Ninth International Conference on Learning Analytics and

Knowledge (LAK 2019), 4–8 March 2019, Tempe, AZ (pp. 11–20). ACM. https://doi.org/10.1145/3303772.3303811

Clow, D. (2012). The learning analytics cycle: Closing the loop effectively. In Proceedings of the Second International

Conference on Learning Analytics and Knowledge (LAK 2012), 29 April–2 May 2012, Vancouver, BC (pp. 134–138).

ACM. https://doi.org/10.1145/2330601.2330636

Coleman, T. E., & Money, A. G. (2020). Student-centred digital game–based learning: A conceptual framework and survey of the state of the art. Higher Education, 79(3), 415–457. https://doi.org/10.1007/s10734-019-00417-0

Crescenzi-Lanna, L. (2020). Multimodal learning analytics research with young children: A systematic review. British Journal

of Educational Technology, 51(5), 1485–1504. https://doi.org/10.1111/bjet.12959

Cukurova, M., Giannakos, M., & Martinez-Maldonado, R. (2020). The promise and challenges of multimodal learning analytics.

British Journal of Educational Technology, 51(5), 1441–1449. https://doi.org/10.1111/bjet.13015

Das, K., Samanta, S., & Pal, M. (2018). Study on centrality measures in social networks: A survey. Social Network Analysis

and Mining, 8(1), 1–11. https://doi.org/10.1007/s13278-018-0493-2

Dawson, S., Gasevic, D., Siemens, G., & Joksimovic, S. (2014). Current state and future trends: A citation network analysis of the learning analytics field. In Proceedings of the Fourth International Conference on Learning Analytics and Knowledge

(LAK 2014), 24–28 March 2018, Indianapolis, IN (pp. 231–240). ACM. https://doi.org/10.1145/2567574.2567585

Dawson, S., Joksimovic, S., Poquet, O., & Siemens, G. (2019). Increasing the impact of learning analytics. In Proceedings of

the Ninth International Conference on Learning Analytics and Knowledge (LAK 2019), 4–8 March 2019, Tempe, AZ

(pp. 446–455). ACM. https://doi.org/10.1145/3303772.3303784

Defence Science and Technology Group. (n.d.). Technology readiness levels definitions and descriptions [Accessed: 2023-01-20]. https://www.dst.defence.gov.au/sites/default/files/basic pages/documents/TRL%20Explanations 1.pdf

Dewiyanti, S., Brand-Gruwel, S., Jochems, W., & Broers, N. J. (2007). Students’ experiences with collaborative learning in asynchronous computer-supported collaborative learning environments. Computers in Human Behavior, 23(1),

–514. https://doi.org/10.1016/j.chb.2004.10.021

Echeverria, V., Martinez-Maldonado, R., & Buckingham Shum, S. (2019). Towards collaboration translucence: Giving meaning to multimodal group data. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI 2019), 4–9 May 2019, Glasgow, UK (pp. 1–16). ACM. https://doi.org/10.1145/3290605.3300269

Echeverria, V., Martinez-Maldonado, R., Power, T., Hayes, C., & Buckingham Shum, S. (2018). Where is the nurse? Towards automatically visualising meaningful team movement in healthcare education. In C. Penstein Ros ́e, R. Mart ́ınez-

Maldonado, H. U. Hoppe, R. Luckin, M. Mavrikis, K. Porayska-Pomsta, B. McLaren, & B. du Boulay (Eds.),

Proceedings of the 19th International Conference on Artificial Intelligence in Education (AIED 2018), 27–30 June

, London, UK (pp. 74–78). Springer. https://doi.org/10.1007/978-3-319-93846-2 14

Estimote. (2023). Estimote UWB Beacons [Accessed: 2023-03-10]. https://www.estimote.com

Fernandes, A. C., Huang, J., & Rinaldo, V. (2011). Does where a student sits really matter? The impact of seating locations on student classroom learning. International Journal of Applied Educational Studies, 10(1).

Fernandez-Nieto, G., An, P., Zhao, J., Buckingham Shum, S., & Martinez-Maldonado, R. (2022). Classroom dandelions:

Visualising participant position, trajectory and body orientation augments teachers’ sensemaking. In S. Barbosa, C.

Lampe, C. Appert, D. A. Shamma, S. Drucker, J. Williamson, & K. Yatani (Eds.), Proceedings of the CHI Conference

on Human Factors in Computing Systems (CHI 2022), 29 April–5 May 2022, New Orleans, LA (pp. 1–17). ACM.

https://doi.org/10.1145/3491102.3517736

Fernandez-Nieto, G., Martinez-Maldonado, R., Echeverria, V., Kitto, K., An, P., & Buckingham Shum, S. (2021). What can analytics for teamwork proxemics reveal about positioning dynamics in clinical simulations? (J. Nichols, Ed.).

Proceedings of the ACM on Human Computer Interaction, 5(CSCW1), 1–24. https://doi.org/10.1145/3449284

Fernandez-Nieto, G., Martinez-Maldonado, R., Kitto, K., & Buckingham Shum, S. (2021). Modelling spatial behaviours in clinical team simulations using epistemic network analysis: Methodology and teacher evaluation. In Proceedings of

the 11th International Conference on Learning Analytics and Knowledge (LAK 2021), 12–16 April 2021, Irvine, CA

(pp. 386–396). ACM. https://doi.org/10.1145/3448139.3448176

Ga ˇsevi ́c, D., Dawson, S., Rogers, T., & Gasevic, D. (2016). Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success. The Internet and Higher Education, 28, 68–84.

https://doi.org/10.1016/j.iheduc.2015.10.002

Gasevic, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1),

–71. https://doi.org/10.1007/s11528-014-0822-x

Ga ˇsevi ́c, D., Zouaq, A., & Janzen, R. (2013). “Choose your classmates, your GPA is at stake!” The association of cross-class social ties and academic performance. American Behavioral Scientist, 57(10), 1460–1479. https://doi.org/10.1177/

Hall, E. T., Birdwhistell, R. L., Bock, B., Bohannan, P., Diebold Jr, A. R., Durbin, M., Edmonson, M. S., Fischer, J., Hymes,

D., Kimball, S. T., La Barre, W., Lynch, F., S. J., McClellan, J. E., Marshall, D. S., Milner, G. B., Sarles, H. B.,

Trager, G. L., & Vayda, A. P. (1968). Proxemics [and comments and replies]. Current Anthropology, 9(2/3), 83–108.

https://www.jstor.org/stable/2740724

Hall, E. T. (1966). The hidden dimension (Vol. 609). Doubleday.

Ioannou, M., Georgiou, Y., Ioannou, A., & Johnson, M. (2019). On the understanding of students’ learning and perceptions of technology integration in low-and high-embodied group learning. In Proceedings of the 13th International Conference

on Computer Supported Collaborative Learning (CSCL 2019), 17–21 June 2019, Lyon, France (pp. 304–311). ISLS.

https://repository.isls.org/bitstream/1/4418/1/304-311.pdf

Kaliisa, R., Rienties, B., Mørch, A. I., & Kluge, A. (2022). Social learning analytics in computer-supported collaborative learning environments: A systematic review of empirical studies. Computers and Education Open, 100073. https:

//doi.org/10.1016/j.caeo.2022.100073

Kim, B. (2010). Social constructivism. In M. Orey (Ed.), Emerging perspectives on learning, teaching, and technology (pp. 55–61). https://textbookequity.org/Textbooks/Orey Emergin Perspectives Learning.pdf

Knight, S., & Buckingham Shum, S. (2017). Theory and learning analytics. In C. Lang, G. Siemens, A. Wise, & D. Ga ˇsevi ́c

(Eds.), Handbook of learning analytics (1st edition, pp. 17–22). Society for Learning Analytics Research. https:

//www.solaresearch.org/publications/hla-17/hla17-chapter1/

Lang, C., Wise, A. F., Merceron, A., Ga ˇsevi ́c, D., & Siemens, G. (2022). What is learning analytics? In C. Lang, G. Siemens,

A. F. Wise, D. Ga ˇsevi ́c, & A. Merceron (Eds.), Handbook of Learning Analytics (2nd edition, pp. 8–18). Society for

Learning Analytics Research. https://www.solaresearch.org/publications/hla-22/hla22-chapter1/

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University Press.

Lefebvre, H., & Nicholson-Smith, D. (1991). The production of space (Vol. 142). Oxford Blackwell.

Li, X., Yan, L., Zhao, L., Martinez-Maldonado, R., & Ga ˇsevi ́c, D. (2023). CVPE: A computer vision approach for scalable and privacy-preserving socio-spatial, multimodal learning analytics. In Proceedings of the 13th International Conference On Learning Analytics and Knowledge (LAK 2023), 13–17 March 2023, Arlington, TX (pp. 175–185). ACM.

https://doi.org/10.1145/3576050.3576145

Lim, F. V., O’Halloran, K. L., & Podlasov, A. (2012). Spatial pedagogy: Mapping meanings in the use of classroom space.

Cambridge Journal of Education, 42(2), 235–251. https://doi.org/10.1080/0305764X.2012.676629

Luciano, M. M., Mathieu, J. E., Park, S., & Tannenbaum, S. I. (2018). A fitting approach to construct and measurement alignment: The role of big data in advancing dynamic theories. Organizational Research Methods, 21(3), 592–632.

https://doi.org/10.1177/1094428117728372

Ludlow, K., Churruca, K., Ellis, L. A., Mumford, V., & Braithwaite, J. (2021). Decisions and dilemmas: The context of prioritization dilemmas and influences on staff members’ prioritization decisions in residential aged care. Qualitative

Health Research, 31(7), 1306–1318. https://doi.org/10.1177/1049732321998294

Mallavarapu, A., Lyons, L., & Uzzo, S. (2022). Exploring the utility of social-network-derived collaborative opportunity temperature readings for informing design and research of large-group immersive learning environments. Journal of

Learning Analytics, 9(1), 53–76. https://doi.org/10.18608/jla.2022.7419

Martinez-Maldonado, R., Echeverria, V., Fernandez Nieto, G., & Buckingham Shum, S. (2020). From data to insights:

A layered storytelling approach for multimodal learning analytics. In Proceedings of the 2020 CHI Conference

on Human Factors in Computing Systems (CHI 2020), 25–30 April 2020, Honolulu, HI (pp. 1–15). ACM. https:

//doi.org/10.1145/3313831.3376148

Martinez-Maldonado, R., Echeverria, V., Santos, O. C., Santos, A. D. P. D., & Yacef, K. (2018). Physical learning analytics: A

multimodal perspective. In Proceedings of the Eighth International Conference on Learning Analytics and Knowledge

(LAK 2018), 7–9 March 2018, Sydney, Australia (pp. 375–379). ACM. https://doi.org/10.1145/3170358.3170379

Martinez-Maldonado, R., Echeverria, V., Schulte, J., Shibani, A., Mangaroska, K., & Buckingham Shum, S. (2020). Moodoo:

Indoor positioning analytics for characterising classroom teaching. In I. I. Bittencourt, M. Cukurova, K. Muldner,

R. Luckin, & E. Mill ́an (Eds.), Proceedings of the 21st International Conference on Artificial Intelligence in Education

(pp. 360–373). Springer. https://doi.org/10.1007/978-3-030-52237-7 29

Martinez-Maldonado, R., Mangaroska, K., Schulte, J., Elliott, D., Axisa, C., & Buckingham Shum, S. (2020). Teacher tracking with integrity: What indoor positioning can reveal about instructional proxemics. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(1), 1–27. https://doi.org/10.1145/3381017

Martinez-Maldonado, R., Schulte, J., Echeverria, V., Gopalan, Y., & Buckingham Shum, S. (2020). Where is the teacher?

Digital analytics for classroom proxemics. Journal of Computer Assisted Learning, 36(5), 741–762. https://doi.org/10.

/jcal.12444

McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276–282. https://doi.org/10.11613/

BM.2012.031

Montague, M., & Rinaldi, C. (2001). Classroom dynamics and children at risk: A followup. Learning Disability Quarterly,

(2), 75–83. https://doi.org/10.2307/1511063

Nguyen, Q., Poquet, O., Brooks, C., & Li, W. (2020). Exploring homophily in demographics and academic performance using spatial-temporal student networks. In Proceedings of the 13th International Conference on Educational Data Mining

(EDM 2020), 10–13 July 2020, online (pp. 194–201). https://educationaldatamining.org/files/conferences/EDM2020/

papers/paper 170.pdf

Ochoa, X. (2022). Multimodal learning analytics—Rationale, process, examples, and direction. In C. Lang, G. Siemens,

A. F. Wise, D. Gaˇsevic, & A. Merceron (Eds.), Handbook of learning analytics (2nd edition, pp. 54–65). Society for

Learning Analytics Research. https://www.solaresearch.org/publications/hla-22/hla22-chapter6/

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M.,

Akl, E. A., Brennan, S. E., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88. https://doi.org/10.1016/j.ijsu.2021.105906

Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18, 315–341. https://doi.org/10.1007/s10648-006-9029-9

Poquet, O., & Joksimovi ́c, S. (2022). Cacophony of networks in learning analytics. In C. Lang, G. Siemens, A. F. Wise,

D. Ga ˇsevi ́c, & A. Merceron (Eds.), Handbook of Learning Analytics (2nd edition, pp. 38–45). Society for Learning

Analytics Research. https://solaresearch.org/wp-content/uploads/hla22/HLA22 Chapter 4 Poquet.pdf

Poquet, O., Lim, L., Mirriahi, N., & Dawson, S. (2018). Video and learning: A systematic review (2007–2017). In Proceedings

of the Eighth International Conference on Learning Analytics and Knowledge (LAK 2018), 7–9 March 2018, Sydney,

Australia (pp. 151–160). ACM. https://doi.org/10.1145/3170358.3170376

Prieto, L. P., Magnuson, P., Dillenbourg, P., & Saar, M. (2020). Reflection for action: Designing tools to support teacher reflection on everyday evidence. Technology, Pedagogy and Education, 29(3), 279–295. https://doi.org/10.1080/

X.2020.1762721

Quuppa. (2023). Quuppa intelligent locating system [Accessed: 2023-03-10]. https://quuppa.com/technology/products/

Riquelme, F., Noel, R., Cornide-Reyes, H., Geldes, G., Cechinel, C., Miranda, D., Villarroel, R., & Munoz, R. (2020).

Where are you? Exploring micro-location in indoor learning environments. IEEE Access, 8, 125776–125785. https:

//doi.org/10.1109/ACCESS.2020.3008327

Saquib, N., Bose, A., George, D., & Kamvar, S. (2018). Sensei: Sensing educational interaction. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(4), 1–27. https://doi.org/10.1145/3161172

Shapiro, L., & Stolz, S. A. (2019). Embodied cognition and its significance for education. Theory and Research in Education,

(1), 19–39. https://doi.org/10.1177/1477878518822149

Sharma, K., & Giannakos, M. (2020). Multimodal data capabilities for learning: What can multimodal data tell us about learning? British Journal of Educational Technology, 51(5), 1450–1484. https://doi.org/10.1111/bjet.12993

Shneiderman, B. (2020). Human-centered artificial intelligence: Reliable, safe & trustworthy. International Journal of Human–Computer Interaction, 36(6), 495–504. https://doi.org/10.1080/10447318.2020.1741118

Sorokowska, A., Sorokowski, P., Hilpert, P., Cantarero, K., Frackowiak, T., Ahmadi, K., Alghraibeh, A. M., Aryeetey, R.,

Bertoni, A., Bettache, K., Blumen, S., Bła ̇zejewska, M., Bortolini, T., Butovskaya, M., Castro, F. N., Cetinkaya, H.,

Cunha, D., David, D., David, O. A., . . . Pierce, Jr., J. D. (2017). Preferred interpersonal distances: A global comparison.

Journal of Cross-Cultural Psychology, 48(4), 577–592. https://doi.org/10.1177/0022022117698039

Stehl ́e, J., Charbonnier, F., Picard, T., Cattuto, C., & Barrat, A. (2013). Gender homophily from spatial behavior in a primary school: A sociometric study. Social Networks, 35(4), 604–613. https://doi.org/10.1016/j.socnet.2013.08.003

van Leeuwen, A., Rummel, N., & Van Gog, T. (2019). What information should CSCL teacher dashboards provide to help teachers interpret CSCL situations? International Journal of Computer-Supported Collaborative Learning, 14(3),

–289. https://doi.org/10.1007/s11412-019-09299-x

Whyte, B. (2017). Collaborative teaching in flexible learning spaces: Capabilities of beginning teachers. Journal of Educational

Leadership, Policy and Practice, 32(1), 84–96. https://doi.org/10.21307/jelpp-2017-008

Wyman, P. J., & Watson, S. B. (2020). Academic achievement with cooperative learning using homogeneous and heterogeneous groups. School Science and Mathematics, 120(6), 356–363. https://doi.org/10.1111/ssm.12427

Yan, L., Martinez-Maldonado, R., Cordoba, B. G., Deppeler, J., Corrigan, D., Nieto, G. F., & Gasevic, D. (2021). Footprints at school: Modelling in-class social dynamics from students’ physical positioning traces. In Proceedings of the

th International Conference on Learning Analytics and Knowledge (LAK 2021), 12–16 April 2021, Irvine, CA

(pp. 43–54). ACM. https://doi.org/10.1145/3448139.3448144

Yan, L., Martinez-Maldonado, R., Gallo Cordoba, B., Deppeler, J., Corrigan, D., & Ga ˇsevi ́c, D. (2022). Mapping from proximity traces to socio-spatial behaviours and student progression at the school. British Journal of Educational Technology,

(6), 1645–1664. https://doi.org/10.1111/bjet.13203

Yan, L., Martinez-Maldonado, R., Zhao, L., Deppeler, J., Corrigan, D., & Gasevic, D. (2022). How do teachers use open learning spaces? Mapping from teachers’ socio-spatial data to spatial pedagogy. In Proceedings of the 12th International

Conference on Learning Analytics and Knowledge (LAK 2022), 21–25 March 2022, online (pp. 87–97). ACM.

https://doi.org/10.1145/3506860.3506872

Yan, L., Martinez-Maldonado, R., Zhao, L., Dix, S., Jaggard, H., Wotherspoon, R., Li, X., & Ga ˇsevi ́c, D. (2023). The role of indoor positioning analytics in assessment of simulation-based learning. British Educational Research Journal, 54(1),

–292. https://doi.org/10.1111/bjet.13262

Yan, L., Martinez-Maldonado, R., Zhao, L., Li, X., & Gasevic, D. (2023). SeNA: Modelling socio-spatial analytics on homophily by integrating social and epistemic network analysis. In Proceedings of the 13th International Conference

on Learning Analytics and Knowledge (LAK 2023), 13–17 March 2023, Arlington, TX (pp. 22–32). ACM. https:

//doi.org/10.1145/3576050.3576054

Yan, L., Zhao, L., Gasevic, D., & Martinez-Maldonado, R. (2022). Scalability, sustainability, and ethicality of multimodal learning analytics. In Proceedings of the 12th International Conference on Learning Analytics and Knowledge (LAK

, 21–25 March 2022, online (pp. 13–23). ACM. https://doi.org/10.1145/3506860.3506862

Zhao, L., Swiecki, Z., Gasevic, D., Yan, L., Dix, S., Jaggard, H., Wotherspoon, R., Osborne, A., Li, X., Alfredo, R., & Martinez-

Maldonado, R. (2023). METS: Multimodal learning analytics of embodied teamwork learning. In Proceedings of the

th International Conference on Learning Analytics and Knowledge (LAK 2023), 13–17 March 2023, Arlington, TX

(pp. 186–196). ACM. https://doi.org/10.1145/3576050.3576076

Zhao, L., Yan, L., Gasevic, D., Dix, S., Jaggard, H., Wotherspoon, R., Alfredo, R., Li, X., & Martinez-Maldonado, R. (2022).

Modelling co-located team communication from voice detection and positioning data in healthcare simulation. In

Proceedings of the 12th International Conference on Learning Analytics and Knowledge (LAK 2022), 21–25 March

, online (pp. 370–380). ACM. https://doi.org/10.1145/3506860.3506935

Downloads

Published

2023-09-05

How to Cite

Yan, L., Zhao, L., Gašević, D., Li, X., & Martinez-Maldonado, R. (2023). Socio-spatial Learning Analytics in Co-located Collaborative Learning Spaces:: A Systematic Literature Review. Journal of Learning Analytics, 1-19. https://doi.org/10.18608/jla.2023.7991

Issue

Section

Research Papers

Most read articles by the same author(s)

1 2 3 4 > >>